Extensions 1→N→G→Q→1 with N=C22xC3:Dic3 and Q=C2

Direct product G=NxQ with N=C22xC3:Dic3 and Q=C2
dρLabelID
C23xC3:Dic3288C2^3xC3:Dic3288,1016

Semidirect products G=N:Q with N=C22xC3:Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xC3:Dic3):1C2 = C2xD6:Dic3φ: C2/C1C2 ⊆ Out C22xC3:Dic396(C2^2xC3:Dic3):1C2288,608
(C22xC3:Dic3):2C2 = C62.57D4φ: C2/C1C2 ⊆ Out C22xC3:Dic348(C2^2xC3:Dic3):2C2288,610
(C22xC3:Dic3):3C2 = C62.115C23φ: C2/C1C2 ⊆ Out C22xC3:Dic348(C2^2xC3:Dic3):3C2288,621
(C22xC3:Dic3):4C2 = C62:7D4φ: C2/C1C2 ⊆ Out C22xC3:Dic348(C2^2xC3:Dic3):4C2288,628
(C22xC3:Dic3):5C2 = C62.225C23φ: C2/C1C2 ⊆ Out C22xC3:Dic3144(C2^2xC3:Dic3):5C2288,738
(C22xC3:Dic3):6C2 = C62.69D4φ: C2/C1C2 ⊆ Out C22xC3:Dic3144(C2^2xC3:Dic3):6C2288,743
(C22xC3:Dic3):7C2 = C2xC6.11D12φ: C2/C1C2 ⊆ Out C22xC3:Dic3144(C2^2xC3:Dic3):7C2288,784
(C22xC3:Dic3):8C2 = D4xC3:Dic3φ: C2/C1C2 ⊆ Out C22xC3:Dic3144(C2^2xC3:Dic3):8C2288,791
(C22xC3:Dic3):9C2 = C62.72D4φ: C2/C1C2 ⊆ Out C22xC3:Dic3144(C2^2xC3:Dic3):9C2288,792
(C22xC3:Dic3):10C2 = C62:14D4φ: C2/C1C2 ⊆ Out C22xC3:Dic3144(C2^2xC3:Dic3):10C2288,796
(C22xC3:Dic3):11C2 = C2xC62:5C4φ: C2/C1C2 ⊆ Out C22xC3:Dic3144(C2^2xC3:Dic3):11C2288,809
(C22xC3:Dic3):12C2 = C22xS3xDic3φ: C2/C1C2 ⊆ Out C22xC3:Dic396(C2^2xC3:Dic3):12C2288,969
(C22xC3:Dic3):13C2 = C2xD6.4D6φ: C2/C1C2 ⊆ Out C22xC3:Dic348(C2^2xC3:Dic3):13C2288,971
(C22xC3:Dic3):14C2 = C22xD6:S3φ: C2/C1C2 ⊆ Out C22xC3:Dic396(C2^2xC3:Dic3):14C2288,973
(C22xC3:Dic3):15C2 = C2xC12.D6φ: C2/C1C2 ⊆ Out C22xC3:Dic3144(C2^2xC3:Dic3):15C2288,1008
(C22xC3:Dic3):16C2 = C22xC32:7D4φ: C2/C1C2 ⊆ Out C22xC3:Dic3144(C2^2xC3:Dic3):16C2288,1017
(C22xC3:Dic3):17C2 = C22xC4xC3:S3φ: trivial image144(C2^2xC3:Dic3):17C2288,1004

Non-split extensions G=N.Q with N=C22xC3:Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xC3:Dic3).1C2 = C62.6Q8φ: C2/C1C2 ⊆ Out C22xC3:Dic396(C2^2xC3:Dic3).1C2288,227
(C22xC3:Dic3).2C2 = C62.15Q8φ: C2/C1C2 ⊆ Out C22xC3:Dic3288(C2^2xC3:Dic3).2C2288,306
(C22xC3:Dic3).3C2 = C62:3C8φ: C2/C1C2 ⊆ Out C22xC3:Dic348(C2^2xC3:Dic3).3C2288,435
(C22xC3:Dic3).4C2 = C2xDic32φ: C2/C1C2 ⊆ Out C22xC3:Dic396(C2^2xC3:Dic3).4C2288,602
(C22xC3:Dic3).5C2 = C62.99C23φ: C2/C1C2 ⊆ Out C22xC3:Dic348(C2^2xC3:Dic3).5C2288,605
(C22xC3:Dic3).6C2 = C2xDic3:Dic3φ: C2/C1C2 ⊆ Out C22xC3:Dic396(C2^2xC3:Dic3).6C2288,613
(C22xC3:Dic3).7C2 = C2xC62.C22φ: C2/C1C2 ⊆ Out C22xC3:Dic396(C2^2xC3:Dic3).7C2288,615
(C22xC3:Dic3).8C2 = C62:4Q8φ: C2/C1C2 ⊆ Out C22xC3:Dic348(C2^2xC3:Dic3).8C2288,630
(C22xC3:Dic3).9C2 = C62.221C23φ: C2/C1C2 ⊆ Out C22xC3:Dic3144(C2^2xC3:Dic3).9C2288,734
(C22xC3:Dic3).10C2 = C62:6Q8φ: C2/C1C2 ⊆ Out C22xC3:Dic3144(C2^2xC3:Dic3).10C2288,735
(C22xC3:Dic3).11C2 = C2xC6.Dic6φ: C2/C1C2 ⊆ Out C22xC3:Dic3288(C2^2xC3:Dic3).11C2288,780
(C22xC3:Dic3).12C2 = C2xC12:Dic3φ: C2/C1C2 ⊆ Out C22xC3:Dic3288(C2^2xC3:Dic3).12C2288,782
(C22xC3:Dic3).13C2 = C22xC32:2C8φ: C2/C1C2 ⊆ Out C22xC3:Dic396(C2^2xC3:Dic3).13C2288,939
(C22xC3:Dic3).14C2 = C2xC62.C4φ: C2/C1C2 ⊆ Out C22xC3:Dic348(C2^2xC3:Dic3).14C2288,940
(C22xC3:Dic3).15C2 = C22xC32:2Q8φ: C2/C1C2 ⊆ Out C22xC3:Dic396(C2^2xC3:Dic3).15C2288,975
(C22xC3:Dic3).16C2 = C22xC32:4Q8φ: C2/C1C2 ⊆ Out C22xC3:Dic3288(C2^2xC3:Dic3).16C2288,1003
(C22xC3:Dic3).17C2 = C2xC4xC3:Dic3φ: trivial image288(C2^2xC3:Dic3).17C2288,779

׿
x
:
Z
F
o
wr
Q
<